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The functional response is one of the most widely measured attributes of consumers. Phenomenalistic descriptions of how 
predator attack rates vary with prey density are fundamental components of consumer-resource models. The application 
of these functions typically assumes continuous foraging by individuals, along with stationarity in their behavioural and 
physiological processes. Yet most species display a diurnal cycle in foraging and resting, and the impact of this foraging 
pattern on the functional response is unknown.

We use a physiologically structured or ‘state–space’ approach to examine how the daily foraging cycle affects the tem-
poral dynamics of attack rates and the functional response of parasitoids (Aphytis melinus) and predators (Mantis crassulea 
and fishes). The state spaces for parasitoids and predators are the number of mature eggs, the eggload, and the satiation 
level, respectively. The corresponding rates are those of egg maturation and oviposition on one hand, and digestion and 
prey capture on the other hand.

We show that the length of the foraging period alters both the shape of the functional response and the magnitude of 
attack rates, compared to a daily functional response proportional to the time spent foraging, as is classically done. Our 
models reveal how separation of time-scales arises between behavioural or physiological and lifetime processes, and the dif-
ficulty in resolving such separation once the new time scale of a foraging cycle is introduced. 

Foragers in many environments, either because of exposure to low resource density or constrained by short foraging 
windows, cannot achieve the behavioural or physiological stationarity assumed in classical analyses. This introduces a fun-
damental mixture of time-scales that has significant effects on estimates of attack rates. Using a population-level model of 
predators and prey, we show how restricted periods of daily foraging have important dynamical consequences both in terms 
of equilibrium levels and return times to these equilibria. 

The functional response of predators, parasitoids, and more 
generally of consumers, has been studied for a large num-
ber of species (extensively reviewed by Jeschke et al. 2002, 
Keeling et  al. 2000, Fernandez-Arhex and Corley 2003, 
Hobbs et al. 2003, Fryxell et al. 2007, Tschanz et al. 2007, 
Englund and Leonardsson 2008). Behavioral ecologists  
are fascinated by how individuals search, detect and cap-
ture prey as the density of these resources varies in quantity 
or quality in different environmental settings. Physiologi-
cal ecologists use these relationships to understand energy 
acquisition and allocation, thereby linking physiological 
processes to resource levels in the environment. Popula-
tion and community ecologists use the functional response 
to infer mortality rates imposed on prey, and also as a 
key component to dynamically couple prey and predator  
populations in models of predator–prey systems or food-
webs (Fryxell and Lundberg 1997, Murdoch et  al. 2003, 
Turchin 2003). The study of functional responses thus spans 
many levels of biological organization and environmental  
settings.

Integrating the information across levels of biological 
organization (i.e. from physiological to individual action, 
or across individuals to population-level responses) in these 
different environmental settings to construct functional 
responses presents some significant challenges, especially 
when these relationships are subsequently used to under-
stand the dynamics of predator and prey populations oper-
ating over larger spatial and temporal scales. For example, 
individual predators often forage over landscapes or in 
environments where there is significant spatial variation in 
quantities of prey, and recent work has examined how this 
spatial variability alters the functional response and hence 
the interaction rates between predators and prey in space 
(Morozov 2010). While spatial variation has received much 
attention, there is surprisingly little research on the effects of 
temporal changes in prey density on the functional response. 
This temporal variation can arise in a variety of ways. Indeed, 
many predators possess diel or diurnal foraging patterns, and 
several other chronobiological rhythms are of great impor-
tance in the life of many organisms (Dunlap et  al. 2009). 
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For example, the foraging window of a leafminer parasitoid 
is set by a complex interaction of environmental (day/night 
cycles) and biotic (plant volatiles emitted after herbivore’s 
attacks), the latter being also driven by the day/night shifts 
(Zhang et  al. 2010). Ruminants, wild and domesticated, 
also have complex diurnal patterns of grazing, alternating 
between active and resting periods, with consequences for 
metabolism (Gregorini et al. 2008, Kramer and Prins 2010). 
Thus, foraging periods for many consumers are punctuated 
by periods of inactivity – either because of physiological, 
behavioral, or environmental constraints, operating singly or 
in combination. In this paper, we show that temporal varia-
tion in foraging activity can have profound effects on the 
estimate of interaction rates for predator–prey dynamics.

The typical approach used to incorporate the functional 
response of predators into dynamic models of resource– 
consumer systems is to assume continuous and instantaneous 
functions. Simply put, the instantaneous attack rates are 
measured at different prey densities in short-term behavioral 
experiments, either in the lab or field, and are then scaled up 
proportionately to the appropriate foraging period and used 
to parameterize dynamic functions in population-level mod-
els (Abrams 1982, Owen-Smith 2002). For example, rates 
measured at the scale of minutes are extrapolated to a daily 
period. We refer to rates calculated from this approach as 
derived from a proportional model. There have been many 
studies that have criticized the experimental design used to 
infer these rates (e.g. prey depletion during the observational 
period, arena size limitation), and demonstrate how biases 
might emerge (summarized by Fellows et al. 2007). While 
these criticisms are important and eliminating these biases 
would lead to more accurate estimates of the instantaneous 
attack rates and their dependence on the quantity of prey, 
there remains the fundamental problem how to integrate 
these instantaneous rates over the appropriate time-scales of 
the dynamics of the predator–prey interaction. The simple 
approach that is most commonly used implicitly assumes 
that the functional response is time-invariant, and hence 
that all underlying behavioral and physiologically processes 
are constant.

In a benchmark series of papers, Metz and van Batenburg 
developed a mechanistic approach that takes into account 
the dynamics of the underlying physiological and behav-
ioral processes to yield the functional response for a preda-
tor (Metz and van Batenburg 1985a, b). This was stimulated  
by the original experimental work by Holling on mantids 
(Holling 1966). Here, we use elements of this approach to 
study the dynamic consequences of variation in the length of 
the foraging period. The Metz’ ‘state-space approach’ consid-
ers a population of individual predators represented as a func-
tion of individual physiological states (Fig. 1.1). Satiation, 
often equated to gut content in empirical studies, is the state 
variable used to model the functional response of predators. 
Satiation increases in jumps, reflecting the capture of prey 
items, and decreases smoothly during digestion. Behavioural 
activities, such as prey capture and handling, are treated as 
a part of the prey capture rate. Prey capture rates depend on  
prey density, but digestion rate does not (Fig. 1.1). Thus, 
changes in satiation of the predator population over time 
can be represented by a stochastic mixed continuous/jump 
Markov PDE equation, in which the continuous part is 

wholly deterministic (Fig. 1.2). We will call this physiologi-
cally structured model the full model.

The analytical resolution of this full model is highly 
complex, requiring different analytical limit processes to 
determine the predator stationary satiation distribution at 
different prey density (Fig. 1.3, 1.4). Stationarity, or steady 
state, refers here to an equilibrium distribution of states 
resulting from the asymptotic behavior of a stochastic pro-
cess (Hunter 1983). Letting time go to infinity has major 
advantages. Given sufficient time, the predator population 
reaches stationarity through the interplay of behavioural 
activities, such as prey pursuing and attacking, and physi-
ological processes, such as digestion (i.e. solving for the 
equilibrium distribution from the PDE – Fig. 1.2 → 1.4). 
The mean value of the predator satiation level is then used 
in a final step to compute the mean number of prey eaten, 
based on the prey capture rate at a given level of satiation. 
Alternatively, the model is first simplified by assuming that 
predators are sucking a broth of tiny, nearly weightless and 
numerous prey, thus smoothing out the stochastic upward 
jumps. The stochasticity inherent to prey capture is lost, 
with the deterministic approximation (Fig. 1.3) becoming 
equivalent to the mean value of the stochastic process. The 
functional response is subsequently obtained by varying the 
prey density. This approach, to varying degrees, has been 
previously applied to spider mites, Daphnia, mantids, preda-
tory bugs, fishes and host–parasitoid systems (Sabelis 1986,  
Mangel and Peters 1989, Gurney et  al. 1990, Hall et  al. 
1995, Briggs et  al. 1995, Van den Meiracker and Sabelis 
1999, Rijn et  al. 2005). In summary, although intrinsi-
cally more realistic due to consideration of the underlying 
physiological and behavioural processes, the full model, once 
time is taken to infinity, shares the same major limitation  
displayed by the proportionality rule: time within a foraging 
bout has been factored out, such that stationarity is assumed 
at any instant.

The derivation of functional responses used in consumer– 
resource models is well known, and can be found in virtually 
every undergraduate ecology textbook. However, once these 
equations describing the functional response (e.g. Holling’s 
disc equation or the Michaelis–Menten equation) are used 
in dynamic predator–prey models, implicit assumptions 
about the time-scale of the behavioural response by preda-
tors and the rate of change of the prey population are then 
introduced. In essence, sub-populations of handling and 
searching predators reach a ‘pseudo-equilibrium’ on fast time 
scales (Metz and van Batenburg 1985a) to yield an attack 
rate by the average predator for that instantaneous density 
of prey. By not assuming this pseudo-equilibrium, we can 
demonstrate the impacts of cyclic foraging periods on the 
equilibrium and stability of predator–prey systems. The full 
model (Fig. 1.1, 1.2), without taking the limits, enables us to 
investigate numerically these implications of temporal varia-
tion on estimates of the functional response.

The implications of cyclic interruptions of foraging for 
physiologically structured populations are indeed not clear. 
Some processes directly related to predation and parasitism 
are active over the entire daily cycle, such as digestion in pred-
ators and egg maturation in parasitoids. Interruptions would 
therefore be expected to have complex effects on population 
frequency distributions within their physiological state space 
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on a daily time scale. These effects may ripple further up to 
the lifetime scale and up to the population dynamics level, 
in case the predation rate is strongly modified. Our specific 
aim is therefore to obtain the most realistic model possible of 
the functional response, taking into account the daily cycles  
of foraging, by developing a full model and numerically 

computing changes in the consumer population over time 
for different foraging windows. This enables us to compare 
the functional response predicted using the full model with 
the response predicted using the proportional model. Cycli-
cal interruptions being present in both approaches, the com-
parison of the predation rates are for the same amount of 

Figure 1. The functional response of predators based on the physiologically structured population modelling approach. The predator popu-
lation is represented by a distribution in a one dimensional state space, satiation. Satiation level, or gut fullness, is expressed in body weight 
(g). Downward movements of the predator population are due to digestion and upward movements are due to prey capture (panel 1). The 
prey size, which defines also the upwards step size, is w (g). Both prey capture and digestion are a function of satiation. Prey capture, in 
contrast to prey digestion, is also dependent on prey density (Ni, expressed in weight (g area1) for consistency). The full stochastic partial 
differential equation (PDE) (panel 2) describing the movement of the distribution of predators over time can be simplified to a determin-
istic ordinary differential equation (ODE) through several assumptions (panel 3). See text for more information about the different assump-
tions. For a given prey density, the value of the approximated deterministic predator satiation level at equilibrium (panel 3) or the (mean) 
value of satiation of the stationary predator distribution (panel 4) is then used to compute the prey capture (panel 5). The functional 
response is then generated by varying prey density (panel 6).
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(Casas et al. 1993). Eggload is a discrete state variable and 
accounts only for mature eggs. Egg maturation is associated 
with moving up in the state space, and is equivalent to prey 
capture for predators; oviposition implies moving down in 
the state space, equivalent to prey digestion. The parasitoid 
population is modelled by a (non-linear) birth and death 
cycling markovian chain model, with maxima at the low-
est and highest eggloads and parameters varying periodically 
with time (Parthasarathy and Lenin 2004).

Such a model requires the birth and death rates, and the 
time periods in which different rates operate, as input. Each 
of these parameters is treated in the following. Egg matura-
tion occurs over the whole cycle and is modelled as a birth 
process. The rate of this activity (b) was assumed to be a 
linear decreasing function of eggload (E), according to previ-
ous experimental studies on Encarsia formosa (van Vianen 
and van Lenteren 1986) and statistical model fitting on  
A. melinus (Casas et al. 2000). The maximal value of the egg 
maturation rate was obtained earlier (b0  0.0048) for eggless  
females (Casas et al. 2000). Oviposition, modelled as a death 
process, only occurs during periods of foraging. The rate of 
this activity (d) is linearly dependent on eggload until each of 
the six ovarioles is processing its mature egg, at which point 
a plateau is reached (Fig. 2B). The monotone increase in the 
oviposition rate is most likely due to the increased accep-
tance of hosts with increasing eggload or increased searching 
activity (Casas et al. 2000). The mechanisms for the chang-
ing motivation can be purely physiological and do not need 
any variability in host quality. The motivation evolves in a 
way opposite to the declining tendency to host-feed (feeding 
on the host fluids after puncturing with the ovipositor) with 
increasing eggload (Collier 1995, Collier et al. 1994). The 
rate of oviposition is highest under conditions of 1) high 
density of the preferred host instar (negligible searching time 
and highest acceptance rate) and 2) maximal eggload. We 
previously observed a maximal egglaying rate of 0.026 eggs/
min under such conditions in the laboratory (Casas et  al. 
2004). It is very similar to the rate observed in another study 
(0.03 eggs min1), conducted in the field, under similar con-
ditions of high host density (Casas et  al. 2000). Thus, we 
used the higher rate as the maximal possible oviposition rate 
for six to 12 mature eggs, the latter figure being the highest 
eggload. The foraging time window varies between three and 
eight hours in the field, with the active period beginning late 
morning (Casas 2000, Murdoch et al. 2005). Short resting 
spells within this window are included, so that a 24 h day 
is composed of a single foraging period and the following 
night.

Let us define the probability Pi(t) of eggload i at time t as 
the fraction of the population that has i mature eggs at time 
t, di as the oviposition rate, bi as the egg maturation rate, 
both at eggload i, and m the highest egg complement car-
ried by a female. The birth–death equation determining the 
dynamics of eggload distribution is therefore:

dP
dt

P P Pi
i i i i i i i= − + + +− − + +( )δ β β δ1 1 1 1     for i1,...m1

dP
dt

P P0
0 0 1 1 β δ                             for i0

time available for foraging, but based on different underlying 
processes.

Our more general goal is to examine how the length of 
the daily foraging period affects the estimation of functional 
response curves, and the implications for modelling the 
dynamics of predator–prey systems. We use three examples 
of organisms with strikingly different biology to illustrate the 
generality of our results. Our first example uses the para-
sitoid Aphytis melinus as a model organism to develop the 
entire approach. Indeed, it is one of the very few species 
for which quantitative information is available on all para
meters: the activity window in the field, the physiological 
and behavioural processes determining egg maturation and 
oviposition, and the role of these processes in the popula-
tion dynamics and control of its host pest, the California red 
scale (Casas 2000, Casas et al. 2000, 2004, Murdoch et al. 
2003, 2005). Such information is only partially available 
for other parasitoids, predators and herbivores. We further 
developed the approach in fewer details for two predators, 
the well known Mantis crassulea example of Holling (1966, 
Metz and van Batenburg 1985a, b) and a fish, whiting  
Merlangius merlangus (Hall et al. 1995). Thus, our examples 
span from terrestrial ambushing invertebrate predators and 
active searching parasitoids, for which digestion and egg 
maturation are the physiological processes of importance, 
respectively, and a vertebrate aquatic predator.

Methods

Modelling parasitoids

Eggload is the relevant physiological state variable when 
working with parasitoids (Fig. 2A), as it determines the 
attack behaviour fundamental to the functional response 

Figure 2. State space and process rates for modelling physiologically 
structured Aphytis parasitoid populations. (A) The state variable 
eggload and the possible transitions in the state space for the para-
sitoid Aphytis melinus. (B) Eggload-dependent egg maturation 
(pink) and oviposition rates at high (black), intermediate (green) 
and low (blue) host densities. The mean values of predicted station-
ary populations for an infinite foraging window at high (EHD) and 
low (ELD) host densities are indicated (parameter values of host 
densities are: high host density  1, intermediate  0.5 and low 
host density  0.1).
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some 14 parameters, reduced to half in simplified model 
developed by Metz and van Batenburg (1985a, b), within 
the physiologically structured framework. We followed the 
same modelling approach as Metz and van Batenburg, using 
the parameters values and the prey densities given in the 
above papers. The satiation level was discretized in 38 units, 
required in the birth-death processes approach, a single unit 
representing the weight of a single prey. Figure 3 clearly 
shows that the prey capture rate is much higher than the 
digestion rate, except for the lowest values of prey density.

The approach was also applied to fishes: whiting  
Merlangius merlangus, and a generic fish with very simi-
lar parameter values (Hall et al. 1995). Some values were 
unfortunately not reported or available in this study. While 
the digestion rate (0.15 g h1, their Table 2), the foraging 
window (from 3 a.m. to 10 a.m.) as well as the capture rate 
(0.25 g h21, their Fig. 13) are given for whiting, the later is 
not a function of the state of the animal, but assumed to be 
a constant. We also assumed, on the basis of their Fig. 6,  
that a prey item weights 0.25 g. Given these conditions, 
the capture and digestion rates cross when the fish is near 
to starvation level. We do not have functional response data 
to compare with our predictions, but there is an estimate 
of the daily food intake of whiting (their Table 5) as well as 
the time history of the mean gut weight, assuming infinite 
foraging window, for the model fish with similar rates as 
whiting (their Fig. 6A).

As done previously for Aphytis, the proportional model 
for both predators is first obtained using the full model with 
a 24 h, hence infinite, foraging window. The functional 

dP
dt

P Pm
m m m m  β δ1 1                             for im

To compute the functional response, we used the fundamen-
tal mass action postulate stating that the oviposition rate is 
the product of the host density times the ‘rate constant of 
effective prey encounters’ (Metz and van Batenburg 1985a). 
We scaled host density by defining the lowest host density, 
at which the maximal oviposition rate (dI  0.03, i  6¼12) 
is attained, as 1. Lower host densities lead to a proportional 
decrease in the oviposition rate; higher host densities do not 
lead to further increases in oviposition rate.

For the full model, the functional response is estimated by 
summing up all laid eggs during a given foraging time win-
dow (i.e. all diPi(t)). For the proportional model, the func-
tional response is based on that obtained using the full model 
firstly run with a foraging window of 24 h (i.e. no cyclicity). 
It is then divided proportionally to match the length a given 
foraging window. All computations were done in MATLAB 
(Mathworks), in particular using the matrix algebra function 
expm for computing the transient distributions.

Modelling predators

The description of the models for predators is succinct, given 
that the same approach as for Aphytis was used. We first 
developed a model for Mantis crassulea, the species for which 
the functional response has been most thoroughly analysed 
by Holling (1966). The original model of Holling contains 

Figure 3. Process rates for modelling physiologically structured Mantis predator populations and long term equilibrium distributions. Rates 
of prey capture and digestion for Mantis crassulea (top graph) and predator satiation distribution for the three prey densities at equilibrium 
for a 24 h foraging period (bottom graph). The predator distribution is a histogram, as the continuous satiation space variable has been 
discretized for the need of computation. The mean satiation level of the predator distribution at equilibrium is highlighted.
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egg maturation rate, as females cannot lay eggs which have 
not been produced. At low host densities, females lay eggs 
more slowly, and will not reach the equilibrium value even 
during an unlimited, i.e. 24 h continuous foraging period 
(ELD, Fig. 4).

The impact of these processes has a major effect on the 
functional response of the parasitoid (eggs laid per foraging 
window), which can be observed by evaluating the full model 
over a range foraging periods and host densities, and com-
paring expectations from the proportional model. Increasing 
foraging time produces a marked shift from linear to hyper-
bolic functional responses (Fig. 5A). The proportional model 
strongly underestimates the true number of hosts attacked 
during a foraging window (Fig. 5B). 

Applying the approach to predators

The overall results and messages for both predators are the 
same as for Aphytis. A comparison of the predictions of the 
functional response of Mantis from our full model with 
those of Holling’s original model, as well as a discussion of  
the small discrepancies, is given in Appendix 1. Figure 6 
shows that the proportional model systematically under
estimates the attack rate of Mantis at all prey levels and for 
any length of the foraging window. The functional response 

response is then scaled proportionally down to the required 
foraging window.

Results

Parasitoid population distribution and their 
functional response

Figure 4A shows the predicted distribution of parasitoid 
states at the beginning and end of an 8-h foraging period 
from our model. Recall that eggload is the balance between 
the maturation and oviposition rate. Note the large change 
in the distribution of parasitoid states in the presence of high 
host density compared to low host density. The 8-h period is 
the maximum observed for Aphytis. Figure 4b shows how the 
mean eggload (i.e. the average of the distribution of preda-
tor states) varies over the entire range of foraging periods 
(e.g. 3–8 h). Figure 4B also shows the equilibrium values 
that would be obtained from an infinite foraging period at 
low and high host densities, labelled ELD and EHD, respec-
tively. The parasitoid population distribution did not achieve 
steady-state values over most of the foraging time windows, 
except at high host density and at the end of a long period of 
foraging (Fig. 4B). At high host densities, females lay most of 
their ripe eggs within a couple of hours. The number of eggs 
laid each day thereafter reached a plateau determined by the 

Figure 4. Aphytis parasitoid population distributions at the begin-
ning and end of a foraging period and daily dynamics of the egg-
load. (A) The predicted population eggload frequency distribution 
at the beginning (full lines) and end (dotted lines) of an eight hour 
foraging window for high (red) and low (blue) host densities. (B) 
Mean eggload during a foraging window of eight hours for low 
(dotted line) and high (full line) host densities. Starting and final 
eggload distributions are given in Fig. 4A. The mean eggload for an 
infinite foraging window at high and low host densities are given by 
the lines EHD and ELD, as in Fig. 2 (parameter values of host densi-
ties are high host density  1 and low host density  0.1).

Figure 5. Functional responses for Aphytis parasitoids. The func-
tional response predicted by the stochastic model as a function of 
time spent foraging each day (A) and comparison (B) between the 
functional responses predicted by the stochastic model (full lines) 
and the proportionality rule (dotted lines) for foraging windows of 
2 and 6 h (8% and 25% of a day; pink triangles and blue dots, 
respectively).
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for example Joern et al. 2006 for a temperature-dependent 
overlap of activity windows between spiders and grasshop-
pers) or they could be externally imposed via extrinsic envi-
ronmental variation (e.g. tidal cycles, as in some of the fishes 
studied by Hall et al. 1995). In addition, the length of the 
foraging window might depend on the state of the predator, 
inducing a feedback loop, as for example in common eiders 
which expand their foraging window greatly in winter in 
order to maintain energy balance (Guillemette 1998).

The importance of these swings and transient periods 
will be a function of five variables: the relative extents of 
the foraging and resting periods, the relative and absolute 
speeds of the processes, the span between the equilibrium 
position and the extreme state attained during the resting 
period, and the resource density. These statements are valid 
irrespective whether the state space is discrete, as for eggs, or 
continuous, as for satiation level and whether the resource 
acquisition is prey capture, plant biomass eaten or eggs laid.  
We have sufficient information on all these parameters for 
only a very few biological system, and partial information for 
many more. Aphytis is the only one case for which all the 
parameters are available, in particular its foraging window: 
3 to 8 h, or 10–30% of a day (Casas 2000, Murdoch et al. 
2005). A quantification of the foraging window of man-
tids in the field is unfortunately wanting. Carabid beetles, 
for which more information is available on diel activity in 
the field but much less on their digestion and prey capture 
rates, also forage for a few hours per day only (e.g. 5.3 h 
for Pterostichus coerulescens). Spiders are also reported to 
have only a few hours to forage (6–8 h, Joern et al. 2006) 
and this does not account for the necessary overlay with 
the activity window of their prey. Finally, large herbi-
vores spend only 30% of their daily time budget foraging 
(Jeschke and Tollrian 2005). Aphytis is therefore in no way 
a special case.

Transients might be the rule, not the exception

As explained in the introduction, the assumption of a sta-
tionary consumer population distribution is fundamental 
to the estimate of the attack rate in the proportional model. 
Our exploration of the full model, based on experimen-
tal data obtained for each variable of interest using the  
Aphytis parasitoid, allowed the identification of the condi-
tions required to give rise to such a stationary population 
distribution. They are 1) a high host density and 2) a long 
foraging time, lasting over eight hours. Under those condi-
tions and given that the oviposition rate is much higher 
than the egg maturation rate, mature eggs do not build up 
during the foraging period and the eggs matured during 
the night can also be laid. Note that the population attains 
the steady state under these conditions only at the end  
of the foraging period. These findings are likely to apply 
to many synovigenic parasitoids with life history traits 
similar to those of Aphytis. However, the identified condi-
tions are not likely to be often met in the field; indeed, 
Aphytis forages in fact for a mere 3 to 8 h, or 10–30% 
of a day (Casas 2000, Murdoch et  al. 2005). The same 
applies most likely to predators and herbivores, as shown 
above. Thus, transients might be the rule rather than the  
exception.

derived from the full model shows the characteristic hyper-
bolic shape, and decreasing the foraging window reduces the 
curvature, as few predators become satiated when the forag-
ing period is short. The full model run for the fish model 
species analysed in Hall et al. (1995, their Fig. 6) predicts for 
an infinite foraging window 1) a mean satiation level of 0.48 
g, which compares quite favourably with 0.5 g estimated 
from Fig. 6A of Hall et al. (1995), and 2) a daily weight gain 
of 1.75 g, as predicted by the above authors.

Discussion

Generality of the approach

The similarities in the results obtained with three strikingly 
different examples illustrates the generality of the approach. 
For predators, as for parasitoids, the state dependent rate of 
resource acquisition is broadly inverse to the rate of resource 
processing. This leads to a stable equilibrium if the two pro-
cesses operate over a long time horizon. A day is however 
split into two major periods. During the foraging period, 
both processes are present, moving the consumer distribu-
tion towards that equilibrium. During the resting period 
however, the slower process is the only active one. It moves 
the distribution away from the equilibrium, towards one 
of the extremes of the state space. At the onset of the next 
foraging period, the quicker process brings the distribution 
back towards the equilibrium point. The resting time is thus 
preparing the next foraging period as the consumer distri-
bution moves in a region of the internal state space which 
ensures high rate of consumption at the onset of the next 
foraging region. Both periods are thus intimately connected 
through the constraint of adding up to 24 h; the end of a for-
aging period is thus not a mere interruption by the incom-
ing night.

A variety of mechanisms produces foraging windows, and 
more generally varying activity levels. They can be related 
to the behaviour of the predator or the prey, including for 
example migratory patterns, risk sensitive foraging etc. (see 

Figure 6. Comparison of the full (F) and proportional (P) models 
for Mantis crassulea for foraging windows of 2, 8 and 16 h.
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mean lifespan in the field is of the same order: two to five 
days according to Heimpel et al. (1997), four days at low 
host density and fourteen days at high host density accord-
ing to Murdoch et  al. (2005). If a consumer would live 
forever, one could model its distribution by gluing Markov 
chains when parameters change abruptly and obtain the 
stationary distribution. This approach breaks down when 
the time scale for convergence is of the same order as the 
lifetime.

Figure 7 also reveals an interesting feature of the state-
dependent transient responses. The pseudo-steady state is 
attained more or less quickly, depending on the starting 
conditions. This is explicitly seen on Fig. 7A and 7B, and is 
a mere consequence of the within-day processes, described 
above and illustrated for Mantis on Fig. 7C and 7D. The 
higher frequency of prey captures at high prey density 
implies that the past conditions are quickly forgotten, within 
and between days.

Implications at the population level

Our focus has been to illuminate the consequences of finite 
foraging periods on attack rates by parasitoids and predators. 
These effects are profound and have even broader impact 
when considering dynamic, interacting populations of con-
sumers and their prey.

Defining the functional response

The concept of the functional response as defined by Metz 
and van Batenburg depends on the following time-scale 
separation assumption: prey density does not change appre-
ciably over a relatively large number of prey capture events 
performed by a single predator (Metz and van Batenburg 
1985a). This enables the limit (t ® ∞) to be taken for the 
satiation process, as it equilibrates much faster than prey or 
predator dynamics. Consumer diel foraging cycles provide 
a new time horizon, the end of the foraging period, and 
new conditions for the use of such limits: the use of the 
average capture per day as the predation rate is only pos-
sible if the consumer’s response time (i.e. the time needed 
for the distribution of the consumer over the state space 
to attain equilibrium) is much shorter than the foraging 
period. The same applies to the number of day/night cycles 
needed for the consumer population to reach a state of 
pseudo-equilibrium: this number should represent a much 
shorter period of time than that associated with life-time 
or generation. Taking Aphytis as a model, in which females 
emerge eggless (Collier 1995), the overall concept of func-
tional response and its underlying time-scale separation 
should be reconsidered. Indeed, recently emerged females 
needed between two and seven days (i.e. cycles) to reach 
the ovarian pseudo-equilibrium (Fig. 7A, B), whereas the 

Figure 7. Resource density determines the speed at which transients in the consumer population distribution decay over a lifetime and over 
a single day. (A) and (B) Mean Aphytis eggload predicted by the stochastic model over many days, as a function of the host density (high in 
A and low in B) and starting conditions (eggless in blue and full egg complement of 12 mature eggs in pink). The lowest dip of a cycle is at 
the end of a foraging period (i.e. day), the highest peak is at the end of a resting period (i.e. night). A pseudo-equilibrium is reached at 
approximately the end of days 2 and 7, for high and low host densities, respectively. (C) and (D) Daily dynamics of Mantis population 
distribution, once the pseudo-steady state has been attained, as a function of the host density (high in C and low in D). The hourly distribu-
tions during the foraging period (in blue) as well as during the night (in red) are represented. The first as well as the last hour within the 
foraging period (Td  1 h and Td  9 h, respectively) are marked, as are the first and last hour of the night (Tn  10 h and Tn  24 h, 
respectively). Distributions are far apart when they move quickly, and are stacked once the steady state is attained, a situation occurring  
only at high resources densities.
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that the full-breadth of dynamic implications of adding new 
time horizons and further multi-scale processes (Getz and 
Schreiber 1999, Singh and Nisbet 2007) can be revealed.
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Appendix 2

Let us model the resource-consumer interaction with:

dV
dt

rV
V
K

N VS= −





−1 ϕ

With V for the density of the resource, r for its growth rate,  
K for its carrying capacity and ϕ for the capture rate. The 
total number of predators, N, is the sum of the searching NS 
and handling predators NH

N N NS H= +

dN
dt

N V NS= −βϕ δ

dN
dt

N N V N V NS
H S S S= + − −

1
τ

βϕ ϕ δ

dN
dt

N V N NH
S H H= − −ϕ δ

τ
1

With b being the conversion factor, d the death rate and t 
the handling time. The parameter values for Fig. 8 are r  1, 
K  1.4, ϕ  10, b  0.5, d  0.1 and t  0.1.

Appendix 1

Comparing the results of Holling’s experiments and 
our predictions

A comparison of the predictions of the full model with those 
of Holling’s original model, which was fitting his data set 
very well, leads to four observations. First, the overall shapes 
of the functional responses are very similar between our sim-
ulations and his observations and differ mainly in the values 
of the plateau. Second, Holling’s model invariably predicts 
higher numbers of prey attacked. Third, the discrepancies 
are negligible at low prey densities and short foraging win-
dows. All three observations can be explained by noting that 
Holling starved his mantids, both experimentally and in the 
model, for 36 h before running the experiment. They were 
therefore highly motivated in pursuing and capturing prey, in 
contrast to our simulated predators which were in a pseudo-
steady state. This difference shows up over extended period 
of time and at high prey density. Finally, other differences 
stem from the processes involved in Holling’s original model 
and in our simplified version, borrowed from Metz and van 
Batenburg. By starting its experiments with nearly starved 
predators, Holling positioned them in a region of the satia-
tion axis where handling times are non-negligible, in con-
trast to our assumption, based on the pseudo-steady state. 
The dynamics of system in the transient regime is known to 
depend crucially on the details of the starting conditions.


